Exercise session index
Search problem modeling: P=<S,s0,G>, S=<S,A,Action,Result,Cost>
Search strategies
Uninformed strategies:
DFS
BFS
Depth limited search
Iterative deepening search
UCS
Properties:
T(n),S(n)
Completeness, optimality
Informed strategies:
Greedy BFS
A*
Properties:
h(n), admissibility, consistent
Adversarial search: P=<S,A,players,actions,result,terminal,utility>
Problem modeling
MINIMAX
α/β pruning
Reinforcement learning: P=(S,A,P,R,[γ,μ0])
Problem modeling
Discrete Bellman equation, Q-Tables:
Q∗(s,a)←(1−α)Q∗(s,a)+α(r+γ×maxa′∈AQ∗(s,a′))
CSP: P=(X,B,C)
Problem modeling
AC-3
Backtracking search
BTS + FC + MRV + LCV
Propositional Logic
PL
FOL
Derivation via resolution calculus
FOL to PL conversion
DPLL algorithm
Planning: P=(Cond,Section,Init,Goal)
Problem modeling
STRIPS, PDDL
Forward search
Backward search
Last updated