Exercise session index

  1. Search problem modeling: P=<S,s0,G>\bold{P} = < \bold{S}, s_0, G>, S=<S,A,Action,Result,Cost>\bold{S} = <S, A, Action, Result, Cost>

  2. Search strategies

    • Uninformed strategies:

      • DFS

      • BFS

      • Depth limited search

      • Iterative deepening search

      • UCS

      • Properties:

        • T(n),S(n)T(n), S(n)

        • Completeness, optimality

    • Informed strategies:

      • Greedy BFS

      • A*

      • Properties:

        • h(n)h(n), admissibility, consistent

  3. Adversarial search: P=<S,A,players,actions,result,terminal,utility>\bold{P} = <S, A, players, actions, result, terminal, utility>

    • Problem modeling

    • MINIMAX

    • α/β\alpha/\beta pruning

  4. Reinforcement learning: P=(S,A,P,R,[γ,μ0])\bold{P} = (S, A, P, R, [\gamma, \mu_0])

    • Problem modeling

    • Discrete Bellman equation, Q-Tables:

      Q(s,a)(1α)Q(s,a)+α(r+γ×maxaAQ(s,a))Q^{*}(s, a) \leftarrow(1-\alpha) Q^{*}(s, a)+\alpha\left(r+\gamma \times \max _{a^{\prime} \in A} Q^{*}\left(s, a^{\prime}\right)\right)

  5. CSP: P=(X,B,C)\bold{P} = (X, B, C)

    • Problem modeling

    • AC-3

    • Backtracking search

    • BTS + FC + MRV + LCV

  6. Propositional Logic

    • PL

    • FOL

    • Derivation via resolution calculus

    • FOL to PL conversion

    • DPLL algorithm

  7. Planning: P=(Cond,Section,Init,Goal)\bold{P} = (Cond, Section, Init, Goal)

    • Problem modeling

    • STRIPS, PDDL

    • Forward search

    • Backward search

Last updated